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Abstract

The fractional quantum Hall effect (fqhe) is a novel state of matter which is observed
in strongly correlated two-dimensional electron systems. In this thesis, we investi-
gate the activation gap of the ν = 5

2 fqhe state by thermal activation methods. This
state, not explained by the existing composite fermion theory, is conjectured to support
quasiparticle excitations which obey fractional statistics—in-between Bose and Fermi
statistics. The 5

2 state is a promising candidate for topologically protected quantum
computing. Measurements of its activation gap can confirm some aspects of its suit-
ability for quantum computing and help to develop fabrication techniques.
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Chapter 1

Introduction

One of the most striking and fundamental discoveries in the field of condensed matter
in the last thirty years is the 1980 discovery of the integral quantum Hall effect (iqhe)
[26] by von Klitzing. Experimentally, the iqhe comprises a dissipationless longitudinal
flow of current and an exactly quantized transverse (Hall) resistance

RH =
1
ν

h
e2 (1.1)

where ν is a quantum number whose values are integers. Physically, ν is equal to
the number of filled Landau levels (lls) (quantized energy states of an electron in a
magnetic field), and is called the filling factor. The signature of the iqhe can be seen
in Figure 1.1a which depicts von Klitzing’s original experimental trace. Figure 1.1b
shows a modern experimental trace exhibiting the iqhe. Moreover, this quantization is
exact to within a part in 10−9 [19]. This effect is observed at very low temperature in
two-dimensional electron systems which are subject, as in the classical Hall effect, to a
strong perpendicular magnetic field. Remarkably, the iqhe is essentially independent
of device geometry and impurity content. The physics of the iqhe is rooted in the
formation of lls by the two-dimensional electrons and the effects of disorder-induced
localization.

More remarkably, in 1982, Tsui, Stormer, and Gossard found that the quantum Hall
effect (qhe) could be observed [23] when ν was equal to certain rational fractions—
numbers of the form p

q where p and q are both integers. This is called the fractional
quantum Hall effect (fqhe). Unlike the iqhe, the fqhe arises due to the strength
of electron-electron interactions. In the fqhe, electrons screen the Coulomb interac-
tion by binding to an even number of quantized flux vortices [12] to form “composite
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(a) The discovery of the iqhe by K. von Kl-
itzing [25] on February 5, 1980. The trace
shows the Hall and longitudinal resistance
of a silicon mosfet at 4.2 K and 19.8 T as a
function of the gate voltage. Note that in a
mosfet, increasing the gate voltage increases
the carrier density and hence increases the
filling factor ν.

(b) A modern iqhe trace, from Pfeiffer
[18]. Here, as B increases, the electron den-
sity decreases, decreasing the filling factor.
Quantized steps in the Hall resistance are
clearly seen with corresponding minima in
the longitudinal resistance indicating dissi-
pationless transport.

Figure 1.1: The experimental signature of the iqhe.

fermions.” These composite fermions then experience their own iqhe which manifests
itself physically as the fqhe. The composite fermion (cf) theory is highly successful
and elegant in its simplicity.

cf theory predicts all of the fqhe states which have odd denominators in ν. How-
ever, fqhe states have been observed which have even denominators [17, 27, 29], such
as 5

2 and its particle-hole conjugate 7
2 . It is believed that the 5

2 state is a spin-polarized
paired state of composite fermions, analogous to a p-wave bcs state [15]. While the 5

2

state is not itself a superconducting state, it is incompressible (possesses a nonzero en-
ergy gap between the ground state and first excited state). This fact is unexpected and
was not predicted by the cf theory. Furthermore, the quasiparticle excitations of the 5

2

state are conjectured [1, 10] to be “non-Abelian anyons,” obeying non-Abelian braid-
ing statistics. Anyonic statistics form a continuum between Bose statistics and Fermi
statistics and particles obeying these statistics have their wave functions multiplied by

2



Figure 1.2: A typical device for quantum Hall transport measurements. This figure
depicts the “Hall bar” geometry, where current is injected at one end of a
rectangular device and extracted at the other end. RL is measured parallel
to the flow of current while RH is measured perpendicular to the current.

an arbitrary phase factor when exchanged. In the case of non-Abelian anyons, the ex-
change interaction is not commutative, that is, the precise order in which particles are
exchanged matters.

Systems whose excitations are non-Abelian anyons possess multiple degenerate
ground states which are “topologically protected.” This means that the ground state is
determined solely by the topology of the system and changing between ground states
requires braiding of quasiparticle excitations [6]. In other words, the ground state of the
system will not evolve into any of the other possible ground states if the temperature
is much lower than the excitation gap. This has exciting possibilities for topologically
protected quantum computing, in which this property is exploited to limit decoherence
of the system and prevent errors [16]. It is believed that the 5

2 state has the required
properties to create topologically protected qubits suitable for quantum computation.
Experimental work is underway to confirm that the quasiparticle excitations of the 5

2

state are indeed non-Abelian anyons [5, 28].
If the 5

2 state does indeed have multiple, topologically protected ground states, as is
believed, then a primary factor in determining its suitability for quantum computing
is the size of the excitation gap. It is the incompressibility of the state which provides a
buffer against decoherence. The larger the gap, the easier it is to prevent decoherence.

3



Figure 1.3: Longitudinal resistance (Rxx or RL) for a high mobility sample clearly
showing many well-developed fqhe states. As in Figure 1.1, each state cor-
responds to a minimum in Rxx.

Hence, knowing the gap of the 5
2 state is important in of itself. It is also important to

be able to measure the gap to characterize specific experimental samples. Producing
experimental samples which exhibit the 5

2 state is an arduous task and there are many
factors which could possibly impact the size of the 5

2 excitation gap. Thus, a gap
measurement provides valuable feedback about the quality of a sample.

In this thesis, we present the results of a measurement of the excitation gap of the 5
2

state via thermal activation. In Chapter 2, we provide an overview of the theory of the
iqhe, fqhe, and the 5

2 state. We discuss the experimental setup in Chapter 3. Finally,
in Chapter 4 we report and discuss our results.

4



Chapter 2

Theory

2.1 Classical Hall Effect

We will begin by briefly discussing the classical Hall effect so as to better appreciate
the profound nature of the qhe. Discovered in 1879 by Edwin Hall [11], the classical
Hall effect is the action of a magnetic field on a current flowing in a conductor.

Suppose that a current flows through a rectangular slab of conductor in the x̂ di-
rection, as shown in Figure 2.1. This current is composed of moving charge carriers,
typically either electrons or holes, each having charge q. Now let the conductor be
pierced by a perpendicular magnetic field B = Bẑ. In the presence of the magnetic
field, the carriers are subject to a Lorentz force

F = q (E + v × B) (2.1)

which causes them to drift in the direction perpendicular to the current with a velocity
v = (E/B)ŷ. This creates a current density J = qncv, where nc is the density of
carriers. This current density is also directed perpendicular to the original current.
Hence, J = qnc(E/B)ŷ. Ohm’s law states that locally,

E = ρJ (2.2)

where ρ is the resistivity. Therefore, the classical Hall resistivity is given by

ρH =
B

qnc
(2.3)

5



Figure 2.1: The classical Hall effect. In the laboratory, one measures a transverse
voltage VH and a longitudinal voltage VL and obtains the resistances by
RH = VH/I and RL = VL/I.

The classical Hall resistivity gives information about both the density and the sign
of charge carriers in a conductor. In fact, Hall knew that the carriers in most metals had
negative charge 19 years before the electron was discovered. Hall effect measurements
remain a valuable tool for characterizing samples, particularly semiconductors.

2.2 Two-Dimensional Electron Systems

The qhe takes place in a two-dimensional electron gas (2deg), that is, a system which
consists of electrons that have been dynamically confined to two dimensions. This con-
finement can be effected in several ways, the two most common of which are semicon-
ductor heterostructures (such as those present in mosfets) and quantum wells. Since
our experimental device is of the quantum well type, we will confine our discussion to
quantum wells. Figure 2.2 depicts a typical quantum well. Such structures are usually
grown using a technique called molecular beam epitaxy (mbe) which enables the cre-
ation of extremely high-mobility devices with properties tailored to the observation of
the qhe.

A 2deg occurs in a quantum well device because the width of the well is sufficiently
small to cause the energy levels of the electrons to be quantized. If the temperature
is low enough that all of the electrons are in the lowest energy level, then they will

6



Figure 2.2: Band diagram of a GaAs-AlGaAs quantum well. The difference in
band gaps between AlGaAs and GaAs creates a potential well. A 2deg

is created when the AlGaAs is doped with electrons. The donors migrate
into the GaAs and fall into the potential well, thus becoming confined. The
horizontal axis corresponds to the direction of deposition on the physical
wafer.

no longer be free to move in the dimension corresponding to the quantum well. The
electrons are still free to move in the other two spatial dimensions and hence a 2deg is
created.

2.3 Integral Quantum Hall Effect

We wrote in the introduction that the iqhe is due to two factors: the formation of lls

and disorder-induced localization. We will explore this in more depth in this section1.

2.3.1 Landau Levels

The energy levels of electrons in a strong magnetic field are quantized. We wish to
focus on the physics here, so we will simply state the result and refer the reader to
the above references for a derivation. As it turns out, in our case the problem of non-
relativistic charged particles in a magnetic field is equivalent to a harmonic oscillator

1A detailed review can be found in e.g. Prange and Girvin’s text [19], Girvin’s notes [8], or Goerbig’s
notes [9].
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problem. The relevant energies are

En = h̄ωc

(
n +

1
2

)
(2.4)

where h̄ωc = eh̄B
mc

is the cyclotron energy. The cyclotron energy defines the relevant
energy scale for the Landau levels. This gives the condition that the qhe is only ob-
served at low temperature, for we must have that kT � h̄ωc to see any effects of lls.
Each ll is massively degenerate, having N = AB/φ0 states. Here, A is the area of the
sample and φ0 is the magnetic flux quantum, equal to φ0 = h/e. For a typical magnetic
field of perhaps 5 T and a sample with an area of 1 cm2, this means that approximately
2 × 1011 electrons occupy each ll. The filling factor, ν, is defined to be the number of
fully filled lls and is given by

ν =
ncφ0

B
. (2.5)

If we substitute this in to Equation (2.3), we find

RH =
1
ν

h
e2 (2.6)

which matches Equation (1.1) for integer values of ν. However, this does not explain
several of the crucial features of the iqhe. For instance, experimental iqhe traces (Fig-
ure 1.1b) show distinct plateaus around integer filling factors where the Hall resistance
remains constant. Furthermore, there is the question of the observed zeros in the lon-
gitudinal resistance.

2.3.2 Localization

Localization of the electrons by weak disorder provides the necessary mechanism to
explain the features of the iqhe. It is interesting to note that in a perfectly clean sample,
no iqhe would be observed. The presence of disorder is essential to the formation of
the iqhe state.

The effect on the lls of introducing impurities into a clean sample can be modelled
by adding an impurity potential term to Equation 2.4 to obtain

En = h̄ωc

(
n +

1
2

)
+ V(r) (2.7)

8



(a) With no impurities, the lls are man-
ifest as a series of delta spikes. An energy
gap of h̄ωc separates the levels.

(b) Impurities broaden the lls and pro-
duce tails of localized states. The energy
gap becomes a mobility gap. It takes en-
ergy to excite a localized electron to be-
gin traversing the sample when the Fermi
level sits in the gap.

Figure 2.3: ll dos for clean (left) and dirty (right) samples.

where r = xx̂ + yŷ + zẑ. The ll energy now clearly varies throughout the sample.
If the impurity potential is taken to be smooth and small compared to the cyclotron
energy, then the effect is to broaden the discrete ll states into ll bands. This is shown
schematically in Figure 2.3. The bands have a core of extended states and a tail of
localized states. This is the case because a given electron will move along an equipo-
tential contour. When an electron has an energy close to the unperturbed Landau level
energy, it is able to move throughout the sample. However, electrons which fall into
potential wells or end up on potential hills are unable to escape and become localized.
The localized electrons are not able to move around the sample and so are not capable
of carrying current.

To see how localization creates the plateaus, let us study a clean sample (no im-
purities) at an integer filling factor, e.g. ν = n, where the Hall resistance is equal to
RH = h/ne2. If we add electrons to the sample, they simply join the other electrons in
the ll and begin to carry current. Now, suppose we switch on the impurity potential
before adding the electrons. With impurities present, the additional electrons become
localized. That is, the Hall resistance stays constant as long as the additional electrons
go into the localized states. This is a plateau. At a certain point, no more localized
states are available to hold the additional electrons and the extended states start to fill

9



Figure 2.4: Bending of lls as a function of transverse position y. Edge channels
are formed where the Fermi level intersects upward-bent lls.

up. As the extended states fill up, the Hall resistance decreases. When the extended
states are all filled up, the Hall resistance lies in the next plateau. To summarize, when
the Fermi level lies in a mobility gap (i.e. a region of localized states), the Hall re-
sistance shows a plateau. When the Fermi level passes through the core of the ll, a
transition between plateaus occurs.

2.3.3 Edge States

It is not obvious from the localization picture that that dissipationless current flow
should occur (zero RL) when the system is on a quantum Hall plateau. This experimen-
tal fact is explained by the presence of “edge states.” Edge states are one-dimensional
channels running around the edge of the sample which carry current chirally (i.e. in
only one direction).

Edge states arise due to the confining potential. In any physical device, the edges
of the sample represent some sort of potential wall. The effect of this is to bend the
lls upwards at the edges (Figure 2.4). When the Fermi level lies in a mobility gap
(i.e. when the system is on a plateau) energetic electrons which are injected at one
end of the device and extracted at the other end (this corresponds to a current flowing
through the device) occupy the edge states. Since the edge states are chiral, electrons

10



flow through the edge channels without any backscattering. Hence, an electron has a
100% probability of making it from the current injection site to the current extraction
site. This means that when the system is on a plateau, the longitudinal resistance is
zero.

2.4 Fractional Quantum Hall Effect

Unlike the iqhe, which is a state experienced by non-interacting electrons, the fqhe

is fundamentally a phenomenon of highly correlated electrons. The physics of the
fqhe cannot be deduced from considerations of lls and disorder; it is strongly non-
perturbative.

The theory of the fqhe
2 is a broad subject. However, there exists a particularly

simple and elegant description of the phenomenology of the fqhe in terms of so-called
composite fermions. A composite fermion is the bound state of an electron and an
even number of quantized vortices. In the context of cf theory, a vortex is a theoretical
construct represented by a zero in the complex wave function. The defining property
of a vortex is that a closed path around it gives a contribution of 2π to the phase of the
wave function. A vortex attached to an electron can be thought of as analogous to a
single flux quantum attached to an electron. Strongly correlated electrons in a magnetic
field B become composite fermions by binding themselves to vortices to screen the
Coulomb repulsion between them. These composite fermions are themselves weakly
interacting and experience an effective magnetic field B∗.

It turns out [12] that the fqhe is equivalent to the iqhe of composite fermions. That
is, electrons at fractional filling factor ν correspond to composite fermions at integer
effective filling factor ν∗. Hence, most of the phenomena of the iqhe carry over to the
fqhe. This includes quantized Hall resistance at certain fractional filling factors and
zero longitudinal resistance on plateaus. Importantly, the incompressibility of the iqhe

states carries over to the fqhe states. The cf approach can be used to construct micro-
scopic wave functions for the fqhe that have been shown to have excellent agreement
with experiment.

2
fqhe theory is well-reviewed in the previously referenced [8, 9, 19]. cf theory in particular is

excellently described in Jain’s text [13].
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2.4.1 The 5
2 State

The 5
2 state, along with some other even-denominator states, is special because it is

not explained by the cf theory, which can only describe odd-denominator fractions.
This fact comes from the requirement that the cf wave function be antisymmetric
(fermionic) under exchange. However, an incompressible state showing all the hall-
marks of the fqhe does exist at 5

2 . As mentioned in Chapter 1, this state is believed
to be a paired state of composite fermions. The state results from the fact that the
interaction between composite fermions at this factor is actually weakly attractive [22].
The wave function describing the 5

2 state is highly analogous to a bcs wavefunction for
Cooper pairs. Importantly, this paired state is gapped and supports an fqhe at 5

2 . The
exact form of the excitations has yet to be conclusively identified; however, for some
hint of what they might look like, we refer the reader to a recent paper by Rodriguez
et al. [20].

2.4.2 Thermal Activation

It is an experimental fact that the longitudinal resistance RL associated with a quantum
Hall plateau is temperature dependent [2, 3, 24]. While RL is truly zero at zero tem-
perature, at any finite temperature there is some activation away from zero resistance.
This temperature dependence can be due to several different mechanisms, including
variable-range hopping effects. However, at high temperature, it is due to thermal
activation where electrons (composite fermions in the case of the fqhe) gain enough
energy to be able to bridge the mobility gap and cross the sample. Empirically, RL is
described by an Arrhenius law:

RL ∝ exp
(
− ∆

2T

)
(2.8)

where ∆ is the gap. This thermal activation behavior gives us an experimental method
which can be used to determine the gap. Measuring the temperature dependence of
the minimum in RL evidently tells us the gap energy.

12



Chapter 3

Experiment

3.1 Sample

For this measurement, we used a high quality GaAs-AlGaAs quantum well sample
grown by Manfra1 at a state-of-the art mbe facility. The sample had a carrier density of
3.1 × 1011 cm−2, as determined from low-field Shubnikov-de Haas oscillations.

Electrical contact to the sample was made with gold bond wires pressed to in-
dium contacts. The sample had already been prepared with indium contacts when we
received it. First, we placed the sample in a non-magnetic ceramic chip carrier and
secured it with poly(methyl methacrylate) (pmma), a polymer which we use as a re-
movable glue. Then, using a wire bonder and small blobs of indium, we secured gold
bond wires to the existing indium contacts and to the contact pads on the chip carrier.

3.2 Measurement

To cool the sample, we employed a dilution refrigerator which is capable of reaching a
base temperature of approximately 12 mK. Dilution refrigerators use a thermodynamic
cycle carried out in a mixture of 3He / 4He to produce large cooling powers. A dilution
refrigerator is ideal for this type of experiment because it is capable of maintaining a
stable temperature for many weeks and because it offers fine-grained control of the
sample temperature.

The voltages and currents involved in qhe measurements are quite small. A typical

1http://www.physics.purdue.edu/mbe/
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AC bias current is on the order of 1 nA and measured voltages are often on the order
of 1 µV. Hence, lock-in detection is essential. A lock-in amplifier is able to make very
sensitive measurements in a noisy environment by matching the phase of the measured
signal to the phase of the input signal. The phase of the noise is random and so if the
measured and input signal are in phase, the measured signal can be recovered even if
the signal-to-noise ratio is quite high.

To carry out temperature dependence measurements, we apply power to the mix-
ing chamber of the dilution refrigerator until the desired temperature is reached. We
measure the temperature using a RuO2 resistive thermometer which is mounted to
the mixing chamber. By applying a bias current and measuring the resulting voltages,
as shown in Figure 1.2, we are able to obtain values for RH and RL. We made these
resistance measurements over a range of temperatures from 60 mK to 120 mK.

14



Chapter 4

Results and Discussion

Figure 4.1 shows a base temperature overview of the qhe in our sample in the region
between ν = 2 and ν = 4. A strong 5

2 state is visible along with other fqhe states.
Figure 4.2 shows a detailed view of the minimum in RL associated with the 5

2 state.
The minimum has a wide, flat bottom which tells us that the 5

2 state is very well
developed. There are no signs of thermal activation at this temperature.

The results of our temperature dependence measurements can be seen in Figure 4.3.
The thermal activation of the 5

2 state is easily seen as the minimum in RL lifts away
from zero resistance. As the temperature rises, excitations from the 5

2 state gain enough
thermal energy to overcome the mobility gap and conduct current through the bulk of
the sample. This causes the longitudinal resistance to deviate from its zero value.

To obtain the value for the gap, we use the Arrhenius law given in Equation 2.8. We
make an “Arrhenius plot” with 1/T as the abscissa and the natural logarithm of the
minimum resistance value as the ordinate. The Arrhenius activation behavior appears
as a straight line whose slope is equal to −∆/2T. By fitting to this line, we obtain a
value for the gap. An Arrhenius plot of our data is shown in Figure 4.4. By fitting to
the linear portion of the plot, we obtain a value for the gap of (537 ± 34)mK. We have
ignored, for the purposes of fitting, the data which are not linear. This is in fact the
physically correct thing to do because the Arrhenius activation behavior only holds in
some region of temperatures. At lower temperature, thermal activation freezes out and
hopping transport dominates [14]. At higher temperature, thermal activation saturates.
Hence, Equation 2.8 is only applicable for a certain range of temperatures.

The uncertainty in our measurement is dominated by the uncertainty in the value
of the minimum resistance. As can be seen in Figure 4.3, there is a certain amount of
noise in the resistance data. We determine the minimum resistance by averaging over a

15



Figure 4.1: Hall and longitudinal resistances for our sample in the filling factor
range from ν = 2 to ν = 4. Several well-developed fractional states can
be seen along with a number of re-entrant integral states. These are highly
interesting in their own right and are due to the formation of crystalline
“bubble” and “stripe” phases. These states occur because the electron kinetic
energy has frozen out and the electrons seek to minimize their Coulomb
energy by forming periodic structures. The measurements shown here were
made at base temperature of approximately 12 mK.

small window (15 points in our case) in the vicinity of the minimum. The uncertainty
is then determined by the magnitude of the noise fluctuations divided by the square
root of the number of points sampled.

To our knowledge, this gap is among the highest ever measured for the 5
2 state.

Previous experiments performed with high-mobility samples have found gaps in the
range of approximately 200 mK to 500 mK [4, 7, 21].

16



Figure 4.2: Detailed view of the 5
2 RL minimum at 12.3 mK. The nonzero value

is due to frequency dependent lock-in detection problems that were later
fixed.

Figure 4.3: Thermal activation of the 5
2 state is clearly evinced as a lifting of the

minimum in RL, which goes from nearly zero resistance to almost 60 Ω as
the temperature of the sample is increased.
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Figure 4.4: Arrhenius plot of thermal activation data. At higher temperatures (cor-
responding to smaller values of 1/T), the activation saturates and no longer
exhibits an Arrhenius behavior. The two highest temperature points are not
included in our fit for this reason. The error bars are one standard deviation.
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Chapter 5

Conclusion

We have measured the energy gap of the 5
2 fqhe state in a high-mobility GaAs-AlGaAs

quantum well. We used the Arrhenius behavior of the temperature dependence of the
minimum in RL to extract the gap energy. We find that ∆ = (537 ± 34)mK, which is
similar to values reported by others for comparable samples.

The 5
2 fqhe state is a fascinating collective state of matter where electrons bind to

flux vortices to form composite fermions which then condense into “Cooper pairs.”
It offers rich possibilities for future research. The exact nature of the state and its
quasiparticle excitations have yet to be conclusively demonstrated and it is still an
open question whether 5

2 supports non-Abelian anyons. If it does, the state presents a
highly promising candidate for realizing topologically protected quantum computing.
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